Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2287863

ABSTRACT

Healthcare workers in the hospital environment are at risk of infection and body fluids such as saliva, bacterial contamination, oral bacteria, etc. directly or indirectly exacerbate this issue. These bio-contaminants, when adhered to hospital linens and clothing, grow substantially, as conventional textile products provide a favorable medium for bacterial and viral growth, adding to the risk of transmitting infectious diseases in the hospital environment. Textiles with durable antimicrobial properties prevent microbial colonization on their surfaces and help contain the spread of pathogens. This longitudinal study aimed to investigate the antimicrobial performance of PHMB-treated healthcare uniforms during prolonged usage and repetitive laundry cycles in a hospital environment. The PHMB-treated healthcare uniforms displayed non-specific antimicrobial properties and remained efficient (>99% against S. aureus and K. pneumoniae) after use for 5 months. With the fact that no antimicrobial resistance was reported towards PHMB, the presented PHMB-treated uniform may reduce infection in hospital settings by minimizing the acquisition, retention, and transmission of infectious diseases on textile products.

2.
Polymers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341707

ABSTRACT

The outbreak of COVID-19 has already generated a huge societal, economic and political losses worldwide. The present study aims to investigate the antiviral activity of Poly(hexamethylene biguanide) hydrochloride (PHMB) treated fabric against COVID-19 by using the surrogate Feline coronavirus. The antiviral analysis indicated that up to 94% of coronavirus was killed after contacting the CVC fabric treated with PHMB for 2 h, which suggests that PHMB treated fabric could be used for developing protective clothing and beddings with antiviral activity against coronavirus and can play a role in fighting the transmission of COVID-19 in the high-risk places.

3.
Polymers (Basel) ; 13(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1288978

ABSTRACT

The spread of COVID-19 has brought about huge losses around the world. This study aims to investigate the applicability of PHMB used for developing antiviral spandex clothing against coronavirus. PHMB was qualitatively determined on the surface of spandex fabrics by using BPB. The antiviral analysis shows that the PHMB-treated spandex fabric can kill 99% of the coronavirus within 2 h of contact, which suggests that the spandex fabric treated with PHMB could be used for developing antiviral clothing against coronaviruses for containing the transmission of COVID-19 in high-risk places. Furthermore, PHMB-treated spandex fabrics were shown excellent antibacterial activity against gram-positive S. aureus and gram-negative K. pneumoniae. The hand feel properties of Spandex fabric were not significantly affected by the PHMB coating in addition to the wrinkle recovery, which was obviously improved after PHMB coating.

4.
Aerosol and Air Quality Research ; 20(11):2309-2317, 2020.
Article in English | Web of Science | ID: covidwho-918370

ABSTRACT

While the novel coronavirus pandemic (COVID-19) continues to wreak havoc globally, self-protection from possible infection by wearing a mask in daily life has become the norm in many places. The unprecedented demand for masks has now attracted attention on their filtration efficiency. Furthermore, the widespread use of disposable masks has led to shortage of filter materials and problems with their haphazard disposal. In this study, a testing system that is based on standardized methods has been established and enhanced to reliably measure the particle filtration efficiency (PFE) of masks. Quality control experiments that examine the filtration efficiency of polystyrene latex (PSL) particles that are 0.1 mu m in size and sodium chloride (NaCl) particles that range from 0.01-1.0 mu m are conducted to determine the reliability of the testing system. Moreover, various textile materials are tested to fabricate 3-layer face masks, and the PFE of these masks is tested by using the proposed testing system to find the most suitable materials and the likelihood of their reusability. Among the tested materials, polytetrafluoroethylene (PTFE) used as the membrane in the filter layer has the highest PFE of 88.33% +/- 1.80%, which is mainly due to its dense and multilayer structure. The air permeability of the self-developed masks ranges from 1.41 +/- 0.04 to 1.93 +/- 0.08, less breathable than the commercial masks. The reusability of a mask that uses PTFE as the membrane in the filter layer is tested by gently washing the mask 30 times and then drying the mask in air before the PFE is measured. The PFE is only reduced by 10-20% after 30 washes, thus indicating the potential reusability of the mask. The findings in this study will contribute to reducing the pressure of mask shortages and are an environmentally friendly solution to the massive use of disposable masks.

5.
International Journal of Environmental Research and Public Health ; 17(18):6623, 2020.
Article | MDPI | ID: covidwho-770403

ABSTRACT

The coronavirus outbreak that commenced at the end of 2019 has led to a dramatic increase in the demand for face masks. In countries that are experiencing a shortage of face masks as a result of panic buying or inadequate supply, reusable fabric masks have become a popular option, because they are often considered more cost-effective and environmentally friendly than disposable medical masks. Nevertheless, there remains a significant variation in the quality and performance of existing face masks;not all are simultaneously able to provide protection against the extremely contagious virus and be comfortable to wear. This study aims to examine the influential factors that affect the comfort of reusable face masks, but not to assess the antimicrobial or antiviral potential. Seven types of masks were selected in this study and subjected to air and water vapor permeability testing, thermal conductivity testing and a wear trial. The results indicate that washable face masks made of thin layers of knitted fabric with low density and a permeable filter are more breathable. Additionally, masks that contain sufficient highly thermally conductive materials and have good water vapor permeability are often more comfortable to wear as they can transfer heat and moisture from the body quickly, and thus do not easily dampen and deteriorate.

SELECTION OF CITATIONS
SEARCH DETAIL